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1 Negative Association and Negative dependence

Negative association informally refers to the notion of diversity when we are interested in sampling a subset of
elements from the universe set. Before describing this in detail, let us define the notion of positive association

Definition 1.1. A probability measure µ is said to be positively associated if for every pair of increasing real valued
set functions f and g on [n], we have ∫

fgdµ ≥
∫
fdµ ·

∫
gdµ (1.1)

The definition of positive association is implied by a more general positive lattice condition, also known as the FKG
lattice condition [5]

µ(S)µ(T ) ≤ µ(S ∪ T )µ(S ∩ T ) (1.2)

If we sample S ∈ [n] according to µ and denote Xi = 1 [i ∈ S], then from Equation (1.1) we get

E [XiXj ] ≥ E [Xi]E [Xj ] ∀ i, j ∈ [n] . (1.3)

The usual definition of negative association [7] in contrast, is not robust and does not follow similar implications
like (1.2) =⇒ (1.1).

Definition 1.2. A probability measure µ is said to be negatively associated if for every pair of increasing real valued
set functions f and g on [n], provided that f and g depend on disjoint subsets, then we have∫

fgdµ ≥
∫
fdµ ·

∫
gdµ (1.4)

For negative dependence, we do not have similar implications like Equation (1.3) because of the identity

Var

[
n∑
i=1

Xi

]
=

n∑
i,j=1

(E [XiXj ]− E [Xi]E [Xj ]) (1.5)

which is always non-negative. For positive association, we have each term in the summation in Equation (1.5) non-
negative. However, for negative association not all summands can be simultaneously non-negative if the variance
of the sum is strictly positive. This is precisely taken care by the constraints put on f and g in Definition 1.2 as
since f is always positively correlated to f .
There are several qualitative notions of negative dependence studied in the literature, but negative association has
several distinct advantages when compared to others. We however would like to have some ideal properties to hold in
our notion of negative dependence in addition to negative association, like closedness under natural operations like
marginalization, product, projection, relabeling, and properties which extend to negative correlation and external
field [9]. Apart from these, we might also want to have properties like stochastic coverage, ultra log-concavity of
rank sequence PS∼µ {|S| = k}. These properties were studied in [2] using the concept of generating polynomials
which give rise to the family of Strongly-Rayleigh measures which satisfy all the desired properties of negative
dependence which we would like to have.
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2 Strongly Rayleigh probability measures

The class of Strongly Rayleigh measures, introduced in [2] as we will see, can characterize all the desired properties
which we would like to have from the notion of negative dependence as discussed in the previous section. This
comes from some geometric conditions on the generating polynomial of a measure.

2.1 Generating polynomials

For i ∈ [n], consider the i-th coordinate function on 2[n] to be the binary random variable given by Xi(S) = 1 [i ∈ S],
and the characteristic function χS(T ) = 1 [S = T ] where S, T ∈ [n]. Therefore any scalar function f : 2[n] → R can
be written as f =

∑
S∈2[n]

f(S)χS , and can be viewed as a multi-affine polynomial f(X1, X2, . . . , Xn) of the random

variables {Xi}ni=1 satisfying f(1) = 1. If µ is a distribution on 2[n], then its generating polynomial is defined as

gµ(z) =

∫
zSdµ(S) =

∑
S∈2[n]

µ(S)zS , z = (zi)
n
i=1 , zS :=

∏
i∈S

zi, zi ∈ C ∀ i ∈ [n] . (2.1)

Therefore for any given function f : 2[n] → C of the form f =
∑
S∈[n]

aSz
S with a[n] = 1 and aS ∈ [0, 1] ∀ S ∈ [n],

its corresponding measure µf on 2[n] can be defined by setting µf (S) = aS ∀ S ∈ [n]. This gives us a one-to-one
correspondence between Pn, the set of measures on 2[n], and Pn, the set of multi affine polynomials in n variables
f(z1, z2, . . . , zn) with non-negative coefficients such that f(1) = 1. Precisely,

gµf = f and µgν = ν ∀ ν ∈ Pn and f ∈ Pn. (2.2)

This one-to-one mapping between Pn and Pn via generating polynomial gives us a strong tool to algebraically and
geometrically analyze the properties on negative dependence. Generating polynomials can be shown to be closed
under product, projection, conditioning, symmetrization, imposition of external field, partial symmetrization and
truncation.

2.2 Strongly Rayleigh measures

Definition 2.1. A measure µ ∈ Pn is said to be pairwise negatively correlated if ∀ 1 ≤ i 6= j ≤ n,

Cov [Xi, Xj ] = E [XiXj ]− E [Xi]E [Xj ] ≤ 0 (2.3)

which in the language of generating polynomials implies

∂gµ
∂zi

(1)
∂gµ
∂zj

(1) ≥ ∂2gµ
∂zi∂zj

(1)gµ(1). (2.4)

Rayleigh polynomials have a stronger notion of pairwise negative correlation and satisfy numerous closedness prop-
erties [2].

Definition 2.2. A polynomial f ∈ Pn is called a Rayleigh polynomial if

∂f

∂zi
(x)

∂f

∂zj
(x) ≥ ∂2f

∂zi∂zj
(x)f(x) ∀ x ∈ Rn+ and ∀ i, j ∈ [n] . (2.5)

Definition 2.3. A measure µ ∈ Pn is said to be a Rayleigh measure if its generating polynomial gµ is a Rayleigh
polynomial.

Definition 2.4. A polynomial f ∈ C [z1, z2, . . . , zn] is called real stable is all its coefficients are real and =(zi) >
0 ∀ i ∈ [n] =⇒ gµ(z) 6= 0.

Definition 2.5. A measure µ ∈ Pn is strongly Rayleigh if its generating polynomial gµ is real stable. A real stable
polynomial f ∈ Pn is called a strongly Rayleigh polynomial.

It can be shown that a strongly Rayleigh measure is necessarily a Rayleigh measure [3]. A polynomial f is real
stable if and only if ∀ a ∈ Rn+, and b ∈ Rn, the uni-variate polynomial f(a1t+ b1, . . . , ant+ bn) is real rooted. This
can be used to check if a polynomial is strongly Rayleigh. Real stable polynomials satisfy some interesting closure
properties. Let Hn(R) be the set of all real stable polynomials in n variables, and let f ∈ Hn(R) have degree dj in
variable zj ∀ j ∈ [n], then
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1. ∂jf ∈ Hn(R) ∩ {0} ∀ j ∈ [n],

2. f(z1, . . . , zj−1, αzj , zj+1, . . . , zn) ∈ Hn(R) ∀ j ∈ [n] and α > 0,

3. f(z1, . . . , zj−1, β, zj+1, . . . , zn) ∈ Hn−1(R) ∩ {0} ∀ j ∈ [n] and β ∈ R,

4.
n∏
j=1

z
dj
j · f(λ1z

−1
1 , . . . , λnz

−1
n ) ∈ Hn(R) if ± (λ1, . . . , λn) ∈ Rn+,

5. f(z1, . . . , zi−1, zj , zi+1, . . . , zn) ∈ Hn−1(R) ∀ i 6= j ∈ [n], and

6. If {fj}∞j=1 ⊂ Hn(R) and f ∈ R [z1, . . . , zn] \ {0} is the limit, uniformly on compact subsets of Cn, of the

sequence {fj}∞j=1, then f ∈ Hn(R).

We will now slowly turn up to some important classes of strongly Rayleigh measures which are nicer to work wit,
both algebraically and computationally.

Proposition 2.6. If {Ai}mi=1 and B are (complex) positive semi-definite (PSD) matrices in Cn×n, then the poly-
nomial

det

(
m∑
i=1

ziAi + B

)
is either identically zero or real stable with all non-negative coefficients.

Proof. We can use the test to check if a polynomial is strongly Rayleigh by defining z(t) = λt + µ with λ ∈ Rn+,
µ ∈ Rn and t ∈ C. Plugging this in, we have

det

(
m∑
i=1

ziAi + B

)
= det

((
m∑
i=1

λiAi

)
t+

(
m∑
i=1

µiAi + B

))
(2.6)

Defining P :=
m∑
i=1

λiAi, and H :=
m∑
i=1

µiAi + B, we have that P is positive definite and therefore is invertible and

has a square root, lets say Q. Therefore,

det

(
m∑
i=1

ziAi + B

)
= det (P) det (tI + QHQ∗) (2.7)

is a positive constant multiple of a characterstic polynomial in t and thus has all real zeros and non-negative
coefficients.

Using this, we directly have that det (A + Z) is a multi-affine real stable polynomial with all non-negative coefficients
for any PSD matrix A and Z := diag (z1, . . . , zn).
Given A ∈ Cn×n and S ∈ [n], define A [S] the principle sub-matrix with rows and columns indexed by S. Let
A 〈S〉 := det

(
A
[
S̄
])

be the principal minor of A with rows and columns indexed by S̄, with A 〈[n]〉 := 1. A matrix
A is called a P-matrix if all its subminors are positive.

Definition 2.7 (Hadamard-Fischer Inequalities and GKK-matrix). A P-matrix A is a GKK-matrix if it satisfies
the Hadamard-Fischer Inequality

A 〈S〉A 〈T 〉 ≥ A 〈S ∪ T 〉A 〈S ∩ T 〉 (2.8)

or equivalently, a P -matrix A is GKK if and only if the probability measure defined by µA on 2[n] defined by

µA(S) =
A 〈S〉∑

T⊆[n]

A 〈T 〉
(2.9)

satisfies the negative lattice condition. The probability measure µA however, has a closed form which can be
computed in polynomial time using the below theorem
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Theorem 2.8. For any U ⊆ [n], ∑
U⊆T⊆X

det (A [T ]) = det (A + IŪ ) (2.10)

where (IŪ )i,i = 1
[
i ∈ Ū

]
∀ i ∈ X , and zeros everywhere else.

Proof. The proof follows and inductive argument. Suppose U = X , then the statement trivially holds. Now suppose
it holds whenever

∣∣Ū ∣∣ < k. Given U such that
∣∣Ū ∣∣ = k > 0, let i be an element of X where i ∈ Ū . We can write

A + IŪ as

A + IŪ =

[
Aii + 1 Aīi

Aīi AX\{i} + I(X\{i})\U

]
(2.11)

where Aīi is the sub-column of the i-th column of A whose rows correspond to ī and similarly Aīi. From the
multi-linearity property of determinant, we have

det (A + IŪ ) =

∣∣∣∣Aii + 1 Aīi

Aīi AX\{i} + I(X\{i})\U

∣∣∣∣ (2.12)

=

∣∣∣∣Aii Aīi

Aīi AX\{i} + I(X\{i})\U

∣∣∣∣+

∣∣∣∣ 1 0
Aīi AX\{i} + I(X\{i})\U

∣∣∣∣ (2.13)

= det
(
A + I

U∪{i}

)
+ det

(
AX\{i} + I(X\{i})\U

)
(2.14)

From the induction assumption, we get

det (A + IŪ ) =
∑

U∪{i}⊆T⊆X

det (A [T ]) +
∑

U⊆T⊆X\{i}

det (A [T ]) (2.15)

=
∑

U⊆T⊆X

det (A [T ]) (2.16)

where the sum can be written as all the sets which include i and all the sets which do not, completing the proof.

For U = ∅, we get a compact form for the measure µA,

µA(S) =
A 〈S〉

det (A + I)
(2.17)

=
det
(
A
[
S̄
])

det (A + I)
(2.18)

Therefore the generating polynomial of the measure µA becomes

gµA
(z) = det (A + I)

−1
∑
S⊆[n]

A 〈S〉 zS = det (A + I)
−1

det (A + Z) , (2.19)

where Z is a diagonal matrix with Zii = zi ∀ i ∈ [n] and zS =
∏
i∈S

zi.

Definition 2.9. A P -matrix A is Rayleigh its associated probability matrix µA is Rayleigh.

Theorem 2.10. A is a Rayleigh matrix ⇐⇒ A + Z is a GKK matrix for all positive diagonal matrices Z.

Proof.⇐= ) A + Z is GKK

=⇒ (A + Z) 〈{i}〉 · (A + Z) 〈{j}〉 ≥ (A + Z) 〈{i, j}〉 · (A + Z) 〈∅〉 ∀ i, j ∈ [n] (2.20)

=⇒ ∂ det (A + Z)

∂zi

∂ det (A + Z)

∂zj
≥ ∂2 det (A + Z)

∂zi∂zj
· det (A + Z) ∀ i, j ∈ [n] (2.21)

=⇒ ∂gµA
(z)

∂zi

∂gµA
(z)

∂zj
≥ ∂2gµA

(z)

∂zi∂zj
· gµA

(z) ∀ i, j ∈ [n] (2.22)

=⇒ µA is Rayleigh =⇒ A is a Rayleigh matrix.
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=⇒ ) If A is Rayleigh, then A [S] is also Rayleigh for U ⊆ [n]. Let |U | ≥ 2, and U := S ∪{i, j} where U ∩{i, j} = ∅
from which we get

det (A + Z) [U \ {j}] det (A + Z) [U \ {i}] ≥ det (A + Z) [U \ {i, j}] det (A + Z) [U ] (2.23)

=⇒ det (A + Z) [S ∪ {i}] det (A + Z) [S ∪ {j}] ≥ det (A + Z) [S] det (A + Z) [S ∪ {i, j}] (2.24)

Let k, l, {Si}ki=0 and {Ti}lj=0 be such that

S ∩ T := S0 ⊂ S1 ⊂ . . . ⊂ Sk =: S (2.25)

S ∩ T := T0 ⊂ T1 ⊂ . . . ⊂ Tl =: T (2.26)

which gives us that for all (i, j) ∈ [k]× [l],

det (A + Z) [Si ∪ Tj−1] det (A + Z) [Si−1 ∪ Tj ] ≥ det (A + Z) [Si−1 ∪ Tj−1] det (A + Z) [Si ∪ Tj ] (2.27)

Taking product over all such equations (2.27) we get

det (A + Z) [S] det (A + Z) [T ] ≥ det (A + Z) [S ∪ T ] det (A + Z) [S ∩ T ] ∀ S, T ⊆ [n] (2.28)

=⇒ (A + Z) 〈S〉 (A + Z) 〈T 〉 ≥ (A + Z) 〈S ∪ T 〉 (A + Z) 〈S ∩ T 〉 (2.29)

=⇒ A + Z is a GKK matrix.

3 Determinantal Probability measures

A widely used notion of negative dependence is via a class of measures called determinantal probability measures
which is closely associated with negative association and strongly Rayleighness [8].

Definition 3.1 (Determinantal probability measure). A measure µ ∈ Pn is a determinantal probability measure
if there is a matrix A ∈ Rn×n such that for any subset S ⊆ [n], we have

µ ({T : S ⊆ T}) = det (A [S]) (3.1)

Definition 3.2 (Positive contraction). A positive semidefinite matrix A ∈ Rn×n is called a positive contraction if
‖A‖2 ≤ 1, where ‖·‖2 is the supremum (operator) norm.

Theorem 3.3. If µ is a determinantal measure on 2[n] whose corresponding matrix is apositive contraction, then
µ is strongly Rayleigh.

Proof. Since positive definite matrices are dense in the space of all all positive semi-definite matrices, it is enough
to proove the statement for invertible positive definite matrices. The generating polynomial of a determinantal
measure is

gµ(z) = det (I−A + AZ) = det (A) · det
(
A−1 − I + Z

)
, (3.2)

where Z = diag (z1, . . . , zn). Since A−1 − I is positive semi-definite and det (A) > 0, so from 2.6, polynomial gµ(z)
is real stable therefore µ is strongly Rayleigh.

Definition 3.4 (Determinantal Point Process (DPP)). A discrete determinantal point process is a stochastic point
process whose probability distribution µ is characterized by a determinant of some positive semi-definite ensemble
matrix L ∈ Rn×n where for any S ⊆ [n]

P [S] ∝ det (LS) (3.3)

Definition 3.5 (k-DPP). For k ∈ [n] ∪ {0}, the truncation of a DPP measure µ to k, µk is called a k-DPP.
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4 Monte Carlo Markov Chain Algorithms for Sampling

We now review Monte Carlo Markov Chain Algorithms (MCMC) for sampling strongly Rayleigh distributions and
determinantal point processes [1]. Notably, Anari, Oveis Gharan, and Rezaei provide and prove a poly(k)O (n log (n/ε))
algorithm for sampling from a k-DPP where ε is the error in total variation distance. We first provide the necessary
background on Markov Chains and MCMC, then discuss the use of MCMC methods for sampling Strongly Rayleigh
measures and k-DPPs.
We dive into the parts of the paper which we find interesting but are not covered in too much detail by Anari, Oveis
Gharan, and Rezaei. We provide more brief descriptions for the proofs covered in detail by their work.

4.1 Markov Chains and MCMC

4.1.1 Preliminaries

A Markov Chain formalizes a process which is quite natural: a process transitioning from state to state in which
the current state determines the future dynamics of the system.

Definition 4.1. A Markov Chain is a collection of random variables {Xt} for Xt ∈ Ω, t ∈ N which satisfies

P (Xt = xt | {Xi}i<t = {xi}i<t) = P (Xt = xt | Xt−1 = xt−1) . (4.1)

Equivalently, the future is conditionally independent of the past given the present.

Definition 4.2. A Markov Chain is said to be time homogeneous if P (Xt = x | Xt−1 = y) does not depend on t
for all x, y ∈ Ω. A time homogeneous Markov Chain is defined by a Markov kernel P where

P (x, y) = P (Xt = x | Xt−1 = y) (4.2)

Definition 4.3. The stationary distribution of a Markov Chain is π if

π(y) =
∑
x∈Ω

π(x)P (x, y) (4.3)

for all y ∈ Ω.

For the remainder of this work we will only consider time-homogeneous Markov Chains (Ω, P, π), where Ω is the
state space, P is the Markov kernel, and π is the stationary distribution.

Definition 4.4. A Markov Chain (Ω, P, π) is said to be reversible if

π(x)P (x, y) = π(y)P (y, x) (4.4)

for all x, y ∈ Ω. Equation 4.4 is referred to in literature as the detailed balance condition.

Theorem 4.5. If a Markov Chain M = (Ω, P, π) satisfies the detailed balance condition with distribution ν, then
ν is the stationary distribution of M . Formally, if ν(x)P (x, y) = ν(y)P (y, x) for all x, y ∈ Ω then ν = π

Proof. Consider any y ∈ Ω. From the detailed balance condition we may write∑
x∈Ω

ν(x)P (x, y) =
∑
x∈Ω

ν(y)P (y, x) = ν(y)
∑
x∈Ω

P (y, x) = ν(y) (4.5)

Definition 4.6. A Markov Chain (Ω, P, π) is said to be lazy if P (x, x) ≥ 1/2 for all x ∈ Ω.
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4.1.2 Mixing Times

Definition 4.7. The Total Variation Distance of distributions π, ν : Ω→ R+ is given by

‖ν − π‖TV =
1

2

∑
x∈Ω

|ν(x)− π(x)|. (4.6)

Definition 4.8. For x ∈ Ω and ε > 0, the Mixing Time τx(ε) is the number of steps required for a Markov chain
(Ω, P, π) with start state x to be approximately distributed according to π. Formally, if P t(x, ·) is the distribution
(at time t) of the chain which starts at x, then

τx(ε) = min{t : ‖P t(x, ·)− π‖TV ≤ ε} (4.7)

Definition 4.9. The Poincare Constant λ of a Markov Chain (Ω, P, π) is given by

λ = inf
f :Ω→R

E(f, f)

Varπ(f)
(4.8)

where the Dirchlet Form E(f, f) is defined to be

E(f, f) =
1

2

∑
x,y∈Ω

(f(x)− f(y))
2
P (x, y)π(x) (4.9)

and the Variance Varπ(f) is given by

Varπ(f) =
∑
x∈Ω

(f(x)− Eπf)
2
π(x) (4.10)

and the infimum is over all functions with nonzero variance.

Lemma 4.10. A reversible Markov Chain with Ω = {0, 1} and P (0, 1) = c · π(1) satisfies λ = c.

Proof. The chain is reversible and so

P (1, 0) =
P (0, 1) · π(0)

π(1)
= c · π(0). (4.11)

We then have

λ = inf
f :Ω→R

1

2

(f(0)− f(1))2(P (0, 1)π(0) + P (1, 0)π(1))

(f(0)− Eπf)2π(0) + (f(1)− Eπf)2π(1)
(4.12)

= inf
f :Ω→R

c · π(0) · π(1)
(f(0)− f(1))2

(f(0)− Eπf)2π(0) + (f(1)− Eπf)2π(1)
. (4.13)

Notice that if we add any constant k to f then both the numerator and denominator are unchanged. Without loss
of generality we may therefore pick f so that Eπf = 0. We then have

λ = inf
f :Ω→R

c · π(0) · π(1)
(f(0)− f(1))2

f(0)2π(0) + f(1)2π(1)
. (4.14)

Additionally, notice that if we scale f by k then we may factor out k2 from both the numerator and denominator
in the equation above. Without loss of generality we may therefore scale f so that f(0) = π(1). Since Eπf = 0 we
have that f(1) = −π(0) and

λ = c · π(0) · π(1)
(π(0) + π(1))2

π(1)2π(0) + π(0)2π(1)
= c · (π(0) + π(1))2

π(1) + π(0)
= c (4.15)

since π(0) + π(1) = 1.

Lemma 4.11. The largest eigenvalue of Markov kernel P is 1.
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Proof. Since P is a Markov kernel, 0 ≤ P (i, j) ≤ 1 for each i, j and each row sum is 1. We first show that P has
eigenvalue 1. Let 1 be a vector of ones. Then P1 = 1 as row i of P1 is

∑
j P (i, j) = 1.

Assume for sake of contradiction that Px = λx for λ > 1. Let i = argmaxj(Px)j .

Lemma 4.12. λ is an eigenvalue of P with eigenvector v iff 1− λ is an eigenvalue of P with eigenvector v.

Proof. If λ is an eigenvalue of P with eigenvecotr v then

(I − P )v = v − Pv = v − λv = (1− λ)v (4.16)

and similarly if (1− λ) is an eigenvalue of I − P with eigenvector v then

Pv = Pv + v − v = −(I − P )v + v = −(1− λ)v + v = λv. (4.17)

Theorem 4.13. The second largest eigenvalue of a Markov chain M with kernel P is 1−λ, where λ is the Poincare
constant.

Proof. For brevity we will prove a slightly restricted version of this theorem. Namely, we will assume that P (x, x) =
1/2 for all x ∈ Ω (we see later that we are roughly concerned with this case). We use the standard inner product
for L2(π),

〈f, g〉π = Eπ [f · g] =
∑
x∈Ω

π(x)f(x)g(x). (4.18)

By Lemma 4.12 may equivalently find the second smallest eigenvalue of I − P , which we denote λ2. By Lemma
4.11 and the Rayleigh Criterion we have

λ2 = inf
f :Ω→R
〈f,1〉=0

〈f, (I − P )f〉π
〈f, f〉π

. (4.19)

Expanding the numerator of Equation 4.19 and using P (x, y)π(x) = P (y, x)π(y) we have

〈f, (I − P )f〉π =
∑
x∈Ω

(1− P (x, x)︸ ︷︷ ︸
=P (x,x)

)f(x)2π(x)−
∑
x 6=y

P (x, y)f(x)f(y)π(x) (4.20)

=
∑
x∈Ω

P (x, x)f(x)2π(x)− 2
∑
x<y

P (x, y)f(x)f(y)π(x) (4.21)

=
∑
x,y∈Ω

P (x, y)π(x)(f(x)− f(y))2 = E(f, f) (4.22)

and likewise the denominator yields

〈f, f〉π =
∑
x∈Ω

f(x)2π(x) = Eπ
[
f2
]

(4.23)

which is equal to Varπ(f) since the condition 〈f,1〉π guarantees that
∑
x f(x)π(x) = E [X] = 0.

Theorem 4.14. For any reversible lazy Markov chain M = (Ω, P, π) with Poincare constant λ, ε > 0 and x ∈ Ω,

τx(ε) ≤ 1

λ
· log

(
1

ε · π(x)

)
. (4.24)

Proof. We will skip some details for brevity (see Proposition 3 of [4]). Recall that

‖P t(x, ·)− π‖TV =
1

2

∑
y∈Ω

|P t(x, y)− π(y)| (4.25)

where P t(x, ·) is the distribution (at time t) of the chain which starts at x. By detailed balance the matrix
A = D−1PD is symmetric, where D is a diagonal matrix with D(x, x) =

√
π(x). Therefore A = V BV T for a

diagonal matrix B and orthogonal V . We may then write P as D−1V BV TD.
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Recall that from Lemma 4.11 there exists some z such that B(z, z) = 1. V TD are the left eigenvectors of P and so
Vw(z) is then

√
π(z).

We find that

P t = (D−1V BV TD)(D−1V BV TD) . . . (D−1V BV TD) = D−1V BtV TD (4.26)

and so

P t(x, y) =

√
π(y)√
π(x)

∑
w

Vw(x)Vw(y)B(w,w)t = π(y) +
∑
w 6=z

Vw(x)Vw(y)B(w,w)t︸ ︷︷ ︸
≤(1−λ)t

. (4.27)

Returning to Equation 4.25 we obtain

1

2

∑
y∈Ω

|P t(x, y)− π(y)| ≤ (1− λ)t

2

∑
y∈Ω

∣∣∣∣∣∣
∑
w 6=z

Vw(x)Vw(y)

∣∣∣∣∣∣ (4.28)

and (1 − λ)t ≤ e−λt. Using Cauchy-Schwartz we may bound
∑
y∈Ω

∣∣∣∑w 6=z Vw(x)Vw(y)
∣∣∣ by 1/π(x). Finally, when

we solve for t such that ‖P t(x, ·)− π‖TV ≤ ε we obtain

e−λt

π(x)
≈ ε ⇐⇒ −λt+ log

(
1

π(x)

)
≈ log(ε) ⇐⇒ t ≈ 1

λ
log

(
1

ε · π(x)

)
. (4.29)

Finally, we discuss the decomposition of the state space of a Markov chain (Ω, P, π) into disjoint Ω0 and Ω1 such
that Ω = Ω0 ∪ Ω1.

Definition 4.15. For i ∈ {0, 1} let π̄(i) =
∑
x∈Ωi

π(x). Moreover, let P̄ (i, j) = π̄(i)−1π(x)P (x, y) for i, j ∈ {0, 1}.
Then the projection Markov chain is defined as

(
{0, 1}, P̄ , π̄

)
. In the projection chain, Ω0 and Ω1 are the only

states.

Definition 4.16. For i ∈ {0, 1} consider a restriction Markov chain (Ωi, Pi, ·) where Pi(x, y) = P (x, y) for y 6=
x, y ∈ Ωi and Pi(x, x) = 1 −

∑
z∈Ωi\{x} P (x, z). In the restriction chain you remain in a state x instead of

transitioning outside of Ωi.

The following theorem is due to Jerrum, Son, Tetali and Vigoda [6].

Theorem 4.17. Let λi be the Poincare constant of the restriction chain for i ∈ {0, 1} and let λ̄ be the Poincare
constant of the projection chain. For any distinct i, j ∈ {0, 1} and x ∈ Ωi, if

P̄ (i, j) =
∑
y∈Ωj

P (x, y) (4.30)

the the Poincare constant of (Ω, P, π) is at least min{λ̄, λ0, λ1}.

4.1.3 An MCMC Algorithm for Sampling A Strongly Rayleigh Measure µ

The algorithm and proof in this section are due to Anari, Oveis Gharan, and Rezaei [1].
Consider a strongly Rayleigh measure µ : 2[n] → R+. Moreover, for i ∈ [n] let S − i be S \ {i} and S + i be S ∪ {i}.
We may then consider a Markov chain Mµ with state space supp{µ} defined by the following algorithm:

In state S choose an element i ∈ S and j 6∈ S uniformly at random and independently and let T = S + j − i.
If T ∈ supp{u} then transition to T with probability 1

2 min {1, µ(T )/µ(S)}.

Because of the 1/2, we know that M is lazy. Moreover, we can show that µ is the stationary distribution.

Lemma 4.18. The stationary distribution of Mµ is µ.
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Proof. From Theorem 4.5 it is sufficient to show that µ satisfies the detailed balance condition. For S, T ∈ Ω =
supp{µ} assume without loss of generality that µ(S) < µ(T ). Then

µ(S)P (S, T ) = µ(S)
1

2

µ(T )

µ(S)
= µ(T )

1

2
= µ(T )

1

2
min

{
1,
µ(T )

µ(S)

}
= µ(T )P (T, S). (4.31)

Let Cµ be defined as

Cµ = min
S,T∈supp{µ}

max {Pµ(S, T )Pµ(T, S)} (4.32)

Theorem 4.19. The Poincare constant λ of Mµ is at least Cµ.

This may be shown by induction on supp{µ}.
The proof uses a natural decomposition of this chain and the application of Theorem 4.14.
Let m be a fixed arbitrary element in [n] such that 0 < PS∼µ(m ∈ S) < 1. Then, let Ω0 and Ω1 be the natural
decomposition

Ω0 = {S ∈ supp{µ} : m ∈ S} (4.33)

Ω1 = {S ∈ supp{µ} : m 6∈ S}. (4.34)

Note that the restricted chain on Ω0 is Mµ|m and the restricted chain on Ω1 is Mµ|m . Here µ|m is used to denote
the µ conditioned on Ym = 1 where Ym(S) = 1 if m ∈ S. Likewise µ|m = {µ : Ym = 0}.
When supp{µ} = 1 then mixing time is Cµ = 1.
Now consider the case where supp{µ} > 1. Since µ|m and µ|m are still strongly Rayleigh, the restricted chains
Mµ|m andMµ|m are covered by the inductive hypothesis. It remains to show that λ̄ ≥ Cµ, where λ̄ is the Poincare
constant of the projection chain.
Unfortunately this is not immediate as equation 4.17 is not satisfied. Consider however a new transition kernel
P̂ with the same stationary distribution as P . Moreover, λ̂ the Poincare constant of (Ω, P̂ , µ) lower bounds the

Poincare constant of Mµ and so λ ≥ λ̂ ≥ Cµ.
Anari, Oveis Gharan, and Rezaei show the following Lemma.

Lemma 4.20. There exists P̂ such that

1. µ(x)P̂ (x, y) = µ(y)P̂ (y, x) and P̂ (x, y) ≤ P (x, y) for all x, y ∈ Ω.

2. For any i ∈ {0, 1}, x, y ∈ Ωi, P̂ (x, y) = P (x, y).

3. The projection chain of the Poincare constant, denoted by
¯̂
λ, is bounded below by Cµ.

4. P̂ satisfies Theorem 4.17.

Note that P̂ (x, y) ≤ P (x, y) for all x, y ∈ Ω guarantees that λ ≥ λ̂. By (2) λi ≥ λ̂i. Moreover, (4) guarantees that

λ̂ ≥ min{¯̂λ, λ̂1, λ̂2}. Finally, this lemma proves Theorem 4.19 as from (3)

λ ≥ λ̂ ≥ min{¯̂λ, λ̂1, λ̂2} ≥ Cµ. (4.35)

Lemma 4.21. There is a function w{x,y} : Ω× Ω → R+ such that w{x,y} > 0 iff P (x, y) > 0 and for any distinct
i, j and any x ∈ Ωj ∑

y∈Ωi

w{x,y} =
µ(x)

µ (Ωj)
(4.36)

Using Lemma 4.21 one may show Lemma 4.20 by constructing P̂ as follows. For any i, j and x ∈ Ωi, y ∈ Ωj let

P̂ (x, y) =

{
Cµ
µ(x)µ (Ωi)µ (Ωj)w{x,y} i 6= j

P (x, y) i = j.
(4.37)
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Anari, Oveis Gharan, and Rezaei check that this P̂ indeed satisfies Lemma 4.20 and construct the function w{x,y}
using a max-flow argument. Central to this argument is showing that for any A ⊆ Ω,

µ(N(A))

µ(Ω0)
≥ µ(A)

µ(Ω1)
(4.38)

where

N(A) = {y ∈ Ω \A : ∃x ∈ A s.t. P (x, y) > 0}. (4.39)

This may be shown with negative dependence. Consider R ∼ µ and let g be a random variable which is 1 if m ∈ S
and 0 otherwise. Let f be a indicator random variable which is 1 if there exists some T ⊆ A such that T \ {n} ⊆ R.
As f and g are increasing one can use negative dependence

µ(N(A))

µ(Ω0)
= Pµ[f(R) = 1|g(R) = 0] ≥ Pµ[f(R) = 1|g(R) = 1] =

µ(A)

µ(Ω1)
. (4.40)

In essence, the max flow argument considers a bipartite graph on Ω0 and Ω1. They show that a graph exists where
the flow on an edge out of x ∈ Ω1 is µ(x)/µ(Ω1) and the incoming flow on an edge into y ∈ Ω0 is µ(y)/µ(Ω0).
By completing this argument, Anari, Oveis Gharan, and Rezaei may invoke Theorem 4.14 to upper bound the

stopping time by 1
Cµ
· log

(
1

ε·π(x)

)
.

5 Extension to a k-DPP

Anari, Oveis Gharan, and Rezaei present the following theorem.

Theorem 5.1. Given an ensemble matrix L of a k-DPP µ and ε > 0 there is an algorithm that gives an ε
approximate sample in time poly(k)O (n log(n/ε)).

As a corollary of the argument in Section 4.1.3, the same MCMC technique may be used to achieve an upper bound

τS(ε) ≤ 1

Cµ
· log

(
1

ε · µ(S)

)
(5.1)

where S is a start state in supp{µ}.
All that remains is to provide a O (n) poly(k) algorithm for sampling S ∈ supp{µ} such that µ(S) = det(LS) ≥ n−k,
as Cµ is at least 1/2nk by construction.
Anari, Oveis Gharan, and Rezaei show that the greedy algorithm works for finding such S. In other words, build S
by successively drawing elements from [n] until |S| = k. At each iteration, choose the element j which maximizes
det(LS+j).

References

[1] Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte carlo markov chain algorithms for sampling
strongly rayleigh distributions and determinantal point processes. In Conference on Learning Theory, pages
103–115, 2016.
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